

AARNet's experience with IPv6

Glen Turner 2007-11-20 Australian 2007 IPv6 Summit

Motivation

Universities take a long time to turn around IPv4 address exhaustion, an iceberg? Want considered adoption, not Y2K-style crisis management

The good

Configuration

```
interfaces {
  ge-0-0-0 {
   unit 0 {
    family inet {
      address {
      202.158.194.13/30;
      }
    }
  family inet6 {
      address 2001:388:1:5::/64; {
      eui-64;
      }
    }
  }
}
```


Easy peasy, lemon squeezy

```
interface GigabitEthernet0/0/0
  ip address 202.158.194.13 255.255.252
  ipv6 enable
  ipv6 address 2001:388:1:5::/64 eui-64
```

Addressing

:ffff::0015/128

:ffff::0016/128

::1/64

::2/64

EUI-64

Interior routing

Most corporate IPv4 routing is mis-configured or uses inadequate protocols Desirable that IPv6 routing be like "ships passing in the night"

BGP

IPv4: .1/30

IPv6: ::1/64

IPv4 routes

routes IPv4: .2/30

IPv6 routes

IPv6: ::2/64

Router> show bgp ipv4 unicast summary									
Neighbor	٧	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ	Up/Down	State/PfxRcd
202.158.192.1	4	7575	6846076	198323	31153526	0	0	9w5d	238782
202.158.192.27	4	7575	1008190	198116	31153526	0	0	2w0d	9688
202.158.199.122	4	64601	100241	106608	31153464	0	0	9w5d	1
Router> show bgp ipv6 unicast summary									
Neighbor	٧	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ	Up/Down	State/PfxRcd
2001:388:1::1	4	7575	313763	198321	207428	0	0	9w5d	985
2001:388:1::26	4	7575	14416	98321	207428	0	0	9w5d	1

Hosts — Thunderbirds are go!

- Good
 - Patched Windows Server 2000
- Better
 - Windows Xp SP2
- Best
 - FreeBSD
 - Linux 2.6: Debian, Fedora, RHEL, Ubuntu
 - MacOS X
 - Windows Vista

The bad

Two address families

- Implies two sets of resource usage
 - For routes
 - For forwarding hardware
- So dual-stack routers need to have more resources then a IPv4 router
- Resources can be hard to spot
 - CAM tables
 - Accounting registers

Poorer exterior topology

IPv4 and IPv6 inter-AS connectivity, CAIDA, March 2005

Domain name system

- Stateless autoconfiguration is convenient for everything but DNS AAAA and PTR records
 - Servers, hard code the EUI-64 address into DNS
 - Clients, hmm, we want this:

No need for VRRP, HSRP or CARP

- Stateless configuration's IPv6 Router
 Advertisement removes the IPv4 assumption of
 one available default route
- So all the default address fakery used by VRRP and friends is no longer needed

DNS name resolution

- Migration requires AAAA be tried before A
- IPv6-only connectivity issues are immediately apparent
- Older code does not detect the absence of a IPv6 network and the attempt to connect to the AAAA address has to time out before the A address is tried

The ugly

Box ticking

Versions and code trains

says:

IPv6 Ready logo phase

Test category
Product version

Product description

Current status
Certificated date

Phase 2

IPv6 core protocol Cisco IOS 12.4(9)T

Operating system for Cisco routers

Approved 20060421

cisco

says:

IOS T: ...functionality and hardware advances for security, voice, and wireless in enterprise, access and commercial networks

83 bugs containing "IPv6" in "Routing" class found for 12.4(9)T No IPv6 support with IS-IS in -k9- IOS

OSPF route-map not matching community-list, all routes redistributed IPv6 ACL not working immediately after command, shutdown required IPv6 loses all routers group

Firewalls and middleboxes

Switches

- Rich IPv4 features
 - IGMP snooping
 - DHCP snooping and source address enforcement
- Nowhere near the same richness of IPv6 support

Validation of claims

- Essential
- Build your network in the lab
- Does it work?
- Don't buy until it does :-)

Back-office systems

Strategies

- Equipment purchased today will need to run IPv6 tomorrow. We mandate IPv6 support.
- We validate current IPv6 support
 - Decide before-hand how to handle non-compliance, since all vendors will fail
- We guesstimate future IPv6 support
- We don't encourage the slackers
 - We don't buy from slack vendors
 - Our network design avoids equipment from slack categories
- We try not to regress

AARNet's experience with IPv6

www.gdt.id.au/~gdt/presentations

Glen Turner glen.turner@aarnet.edu.au

